

2000 V 6H-SiC PN Junction Diodes

Philip G. Neudeck, David J. Larkin, Carl S. Salupo, J. Anthony Powell, and Lawrence G. Matus

NASA Lewis Research Center Cleveland, Ohio

Acknowledgments

Robert Allen, Gerry Buchar, and Luann Keys NASA Lewis Research Center

Research carried out under internal funding by NASA Lewis Research Center, Cleveland, Ohio

Key development areas for SiC power devices:

- Contact resistivities.
 device on-state resistances.
- Thermal oxidation and surface passivation.
 SiC MOSFET's, power device reliability.
- SiC wafer growth.
 defects limit device areas, current ratings.
- SiC epilayer growth.
 background dopings and uniformity.

6H-SiC PN Junction Diodes

NASA Lewis 6H-SiC PN Diode

Previous best reported SiC diode blocking voltage: 1400 V

2000 V functional yield greater than 50% on small-area (4 x 10⁻⁴ cm²) devices.

Current Density (A/cm 2)

6H-SiC PN Diode Characteristics

6H-SiC Diode after 2200 V Catastrophic Failure

Failure appears to occur at diode periphery.

Measured PN Junction Breakdown Fields

Summary

- Site Competition Epitaxy has greatly improved dopant control in CVD SiC epilayers.
- Reduced epilayer doping has enabled demonstration of the first 2000 V SiC rectifiers ever reported.
- Surface passivation, crystal defects, and other key issues need to be addressed.
- Further improvements expected as crystal growth and processing technologies continue to mature.